Natural Intelligence Farming: Ian and Dianne Haggerty – Future Directions International

Key Point

  • Natural Intelligence farming uses natural processes combined with modern agricultural technology to produce food and fibre of optimum nutrition and quality while enhancing positive ecosystem development.
  • Natural Intelligence farming has the potential to sustainably regenerate the agricultural landscape, restore biodiversity and to sequester greenhouse gasses in the soil as beneficial soil carbon.
  • There is a direct link between soil health and human health and there is a growing body of research into this relationship between soil and plant/animal, human and environmental health.
  •  Natural intelligence farming can be applied to broad-acre agricultural production with only small changes to capital equipment and a reduction in operating costs and increased productivity.
  • Once the appropriate logistic infrastructure is available, the produce from Natural Intelligence farming can be market differentiated and priced accordingly for its nutrient diversity and absence of chemicals and other toxins.


Natural Intelligence Farming is the term Ian and Dianne Haggerty use to describe the harnessing of the dynamic, natural relationships that exists between all the organisms in the ecosystem and the environment itself, particularly the soil. These relationships are highly complex and versatile. They involve mutually beneficial interactions between the soil, plant seeds and roots, microorganisms, and the ruminants that feed on the plants and cycle dung and microbes back to the soil. Understanding these relationships requires a holistic engagement with the agricultural ecosystem and the body of scientific knowledge supporting this understanding is still incomplete. The key to natural intelligence farming is not to hinder or obstruct the interactions that support and inform these relationships.  The Haggerty’s aim is to facilitate natural intelligence with modern farming methods to create regenerative agricultural ecosystems that produce optimal food and fibre products.

Ian and Dianne farm approximately 13,000 hectares of land in Western Australia’s central wheatbelt, around 190 kilometres north east of Perth. After years of conventional farming, the Haggerty’s realised that their system was vulnerable to dry seasons. Input costs were steadily increasing without corresponding increases in productivity. Soil tests showed adequate nutrient levels, but tissue tests revealed nutrients were not getting to plants in appropriate balance, despite a comprehensive mineral fertiliser program. To top it off, rainfall in recent years had been less than half the annual average often falling in 3 to 5 mm events followed by windy weather, meaning much was lost to evaporation. Maximising crop production in dry years had become a real struggle and hard pans in their soils were severely restricting root growth. So, the Haggerty’s started to research biologically-based farming systems with the aim of increasing their soil’s microbial population, nutrient availability and moisture holding capacity.  What followed was a massive learning curve combining and adapting some of the world’s best ecological knowledge with much ground truthing and extension in harsh Western Australian semi-arid agricultural zone conditions.

Ian and Dianne have a life mission to facilitate positive global change by rebuilding soils in semi-arid regions, producing premium food and fibre and supporting the nutritional needs of humanity to optimise health. In this Feature Interview, FDI takes the opportunity to interview Ian and Dianne and investigate what it is that they are doing differently from other farmers and the benefits of their methods for productivity, ecological regeneration and plant, animal and human health.Picture4Figure 1. A visual comparison between Ian and Dianne Haggerty’s property to the right of the track and a neighbouring property to the left during hot, dry spring. Source: The interviewee.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s